TEMPERATURE CONTROLLER SERIES: PR-69

INDEX:

1. CATALOG DESCRIPTION -04
2. FEATURES -05
3. FRONT FASCIA -06
4. PRODUCT DESCRIPTION -07
5. DIMENSIONS -07
6. TECHNICAL SPECIFICATIONS -09
7. EMC, SAFETY \& ENVIRONMENTAL 12
8. MEASUREMENT -16
9. DISPLAY 18
10. ACTIVE SET POINT SELECTION 19
11. CONTROL STATES 19
12. CONTROL ACTIONS -21
13. AUTO TUNING -28
14. RAMP AND SOAK -31
15. SOFT START -34
16. TIMERS -35
17. ALARMS -36
18. PROGRAMMING -43
19. SEVEN SEGMENT DISPLAY -44
20. MENUS 45
21. MODBUS -57
22. MODBUS QUERIES -61
23. CONNECTION DIAGRAMS 83
24. FAQS -87
25. ERROR OCCURRED IN DEVICE -93

CAUTION:

1. Always follow instructions stated in this product booklet.
2. Before installation, check to ensure that specifications agree with intended application.
3. Installation must be done by skilled technician.
4. Automation and controlled devices must be properly "installed" so that they are protected against any risk of involuntary actuations. 5. Suitable dampers should be provided in event of excessive vibrations.

NOTE:

Models are indicated by special symbols as shown in table on Page 4 and given symbols are used while explaining the device functionality. Eg: coeF\# ${ }^{5,6,7,8,9,10,11,12}$ - Coefficient, Range: 0.1 to 10.0 default: 1

The example above explains that the feature is applicable only for 151F43B1,151G43B1,151H43B1,151J43B1, 151F43B, 151G43B, 151H43B, 151 J43B.
\#Symbols appear where description vary based on models. If the \# does not appear, then it indicates that the feature is applicable to all the models.

1.0 CATALOG DESCRIPTION:

CAT ID	Action	Analog I/P	O/P 1	O/P 2	O/P 3	Modbus	Symbol
151F42B	Single	YES	Relay	Relay	SSR	NA	\# 1
151G42B	Single	YES	Analog	Relay	SSR	NA	\#2
151H42B	Single	YES	Analog	Relay	Relay	NA	\#3
151 J42B	Single	YES	Relay	Relay	Relay	NA	\#4
151F43B1	Dual	YES	Relay	Relay	SSR	YES	\#5
151G43B1	Dual	YES	Analog	Relay	SSR	YES	\#6
151H43B1	Dual	YES	Analog	Relay	Relay	YES	\#7
151 J43B1	Dual	YES	Relay	Relay	Relay	YES	\#8
151F43B	Dual	YES	Relay	Relay	SSR	NA	\#9
151G43B	Dual	YES	Analog	Relay	SSR	NA	\#10
151H43B	Dual	YES	Analog	Relay	Relay	NA	\#11
151 J43B	Dual	YES	Relay	Relay	Relay	NA	\#12
151K42B	Single	YES	Relay	SSR	NA	NA	\#13
151L42B	Single	NO	Relay	Relay	SSR	NA	\#14

2.0 FEATURES:

> Field selectable thermocouple, RTD, 0-50 mV, 0-60 mV, 12-60 mV Voltage: 0-5V, 1-5V \& 0-10V Current: 4-20mA
> Auto tuning.
> Field configurable process and deviation alarms.
> Bump less Auto Manual transfer.
> Soft Start mode.
> Temperature range selection. $1 .{ }^{\circ} \mathrm{C}$ - Celsius 2. ${ }^{\circ} \mathrm{F}$ - Fahrenheit
> Dual display with configurable lower display. 1.Co-Controller Output 2.Effective Set Point 3.Set Point 4.Alarm threshold 5.Timer time 6.Unit
> Timer Functionality (Only for Single acting devices)
> Three outputs.
> Control modes: ON-OFF Symmetric, ON-OFF Asymmetric, Single acting PID control.
> Two set point storage.
> SSR driving with short circuit protection. Password "Enable" and "Disable" function added
> which helps user to enable the password as and when required. In Factory Default, Password is "Disabled".
> Additional Features available in dual acting devices: (Cat. Nos.: 151F43B1, 151G43B1, 151H43B1, 151J43B1,151F43B, 151G43B, 151H43B, 151J43B
-> Control modes: Neutral zone ON-OFF, ON-OFF Symmetric, ON-OFF Asymmetric, Dual acting PID control.
-> Additional two set point storage (Total Four Set point storage)
-> Rs485 Mod-bus communication. (Not applicable for Cat ID:151 F43B, 151G43B, 151H43B, 151 J43B)
-> Ramp \& Soak Functionality

3.0 FRONT FASCIA:

FRONT FASCIA DESCRIPTION:

1. PV : Displays the "Process Value".
2. SV : Displays the "Set Value".
3. Key'®' : Configurable key 'C'.
4. Key' ${ }^{\text {' }}$ ' : Scroll down key 'DN'.
5. Key'(4) : Scroll up key 'UP'.
6. Key' $($ ' : Enter key 'E'.
7. OP3 : LED indication for output 3.
8. OP2 : LED indication for output 2.
9. OP1 : LED indication for output 1.
10. '-' : Indicates that PV is less than(SP-Value in the setting LED).
11. ' $=$ ' : Indicates that PV is equal to SP.
12. ' + ' : Indicates that $P V$ is greater than(SP+Value in the setting LED).
13. 'AT' : This LED indicates the Auto tuning process is ON.
14. 'TM' : LED blinking- This indicates that timer process is ON.

LED Continuous ON- Timer time completed.

4.0 PRODUCT DESCRIPTION:

PR-69 is a single loop, single/dual acting Microprocessor based controller with ON-OFF, PID, and Auto tunning functionality. The product has two/four programmable set points and depending on model provides three different outputs.

Three Input sensor accepted in PR-69:

1. Thermocouples
2. RTD: PT-100 (Three wire compensation)
3. Standard mV signals:0-50 mV,0-60 mV, 12-60 mV.
4. Voltage $0-5 \mathrm{~V}, 1-5 \mathrm{~V}$ \& $0-10 \mathrm{~V}$, Current $4-20 \mathrm{~mA}$

5.0 DIMENSIONS (in mm):

BACK PLATE_WITH TERMINAL

BACK VIEW
Please refer pg. 83 to pg. 85 for connection diagrams.

6.0 TECHNICAL SPECIFICATIONS:

Supply Voltage

110-240 VAC/DC, -20% to $+10 \%, 50-60 \mathrm{~Hz}$

Power Consumption

8 VA

Temperature Sensors

Thermocouple J, K, E, S, B, R
RTD (PT100, 3 wire compensation),
mV signals ($0-50 \mathrm{mV}, 0-60 \mathrm{mV}, 12-60 \mathrm{mV}$)

Analog I/P

Voltage 0-5V, 1-5V \& 0-10V
Current $4-20 \mathrm{~mA}$

Measurement Range

Sensor J: 0 to $700^{\circ} \mathrm{C} / 32$ to $1292^{\circ} \mathrm{F}$
Sensor K: 0 to $1300^{\circ} \mathrm{C} / 32$ to $2372^{\circ} \mathrm{F}$
Sensor E: 0 to $600^{\circ} \mathrm{C} / 32$ to $1112^{\circ} \mathrm{F}$
Sensor S: 0 to $1750^{\circ} \mathrm{C} / 32$ to $3182^{\circ} \mathrm{F}$
Sensor B: 250 to $1820^{\circ} \mathrm{C} / 482$ to $3308^{\circ} \mathrm{F}$
Sensor PT100:-200 to $700^{\circ} \mathrm{C} /-328$ to $1292^{\circ} \mathrm{F}$
Sensor R: 0 to $1750^{\circ} \mathrm{C} / 32$ to $3182^{\circ} \mathrm{F}$

Measurement Accuracy

0.5% of full scale of $\mathrm{P}+100$, for $\mathrm{j}, \mathrm{K}+/-1 \%$ \& for other thermocouple it is $+/-3 \%$, For Tc and mV signals $+/-0.2 \%$ at $25^{\circ} \mathrm{C}$ (For DC Analog Input)

Resolution

S, B, R: $1^{\circ} \mathrm{C}$
J, E, K, PT100: $0.1^{\circ} \mathrm{C}$ for Tc and mV signals $\mathrm{mV}: 0.001^{\circ} \mathrm{C}$

Display

4- Digit 7 Segment LED Display with LED indicatation.

Keypad

4-Keys: Configurable@, Down(DN), Up(UP), Enter(E).
Op1 rating \# $\#^{1,4,5,8,9,12}$ SPST, 5A, 250 VAC/30 VDC(RES.)
OP1 rating \# ${ }^{23,6,7,10,11} 4-20 \mathrm{~mA} / 0-10 \mathrm{VDC}$
Op1 rating $\#^{13,14}$ SPDT, 10A, 250VAC/30VDC (RES.)
Op2 rating SPST, 5 A at $240 \mathrm{VAC} / 3 \mathrm{~A}$ at 30 VDC
Op3 rating \# ${ }^{1,25,6,9,9,1,13,14}$ SSR Drive 12V, 24 mA DC max
Op3 rating $\#^{3,4,7,8,1,12}$ SPST,5 A,250VAC/30VDC (RES.)
Contact Material : AgNi
Life of relays:

$\begin{aligned} & \text { of relays: } \\ & \text { OP1 \# } \#^{1,4,5,9,12} \end{aligned}$	Mechanical life	5×10^{6}
	Electrical life	: 1×10^{5}
OP1 \# ${ }^{13,14}$	Mechanical life	$: 1 \times 10^{7}$
	Electrical life	$: 1 \times 10^{5}$
OP2	Mechanical life	$: 5 \times 10^{6}$
	Electrical life	: 1×10^{5}
OP3 \# ${ }^{3,4,7,8,1,12}$	Mechanical life	5×10^{6}
	Electrical life	1×10^{5}

Max. Resistance in case of current output
(terminal 1 and 13) \# ${ }^{23,6,7,10,11} 600 \Omega$
Min. Resistance in case of voltage output
(terminals 11 and 12) \# ${ }^{2,3,6,7,10,11}$
$30 \mathrm{k} \boldsymbol{\Omega}$
Temperature Sampling Rate/PID Sampling Rate
$150 \mathrm{~ms} / \mathrm{s}$

Weight (Unpacked)

280 g
Humidity
80\% Rh Non-condensing
Max. Operating Altitude
2000 m
Operating Temperature Range
$0^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$

Storage Temperature Range

$-20^{\circ} \mathrm{C}$ to $60^{\circ} \mathrm{C}$

Pollution Degree

2
IP Protection
IP 40 for front panel and IP 20 for terminal and Housing

Dimensions (WXHXD)
$96 \times 96 \times 69.1$ (in mm)

Mounting

Panel mounting

Terminal Capacity

$2 \times 2.5 \mathrm{~mm}^{2}$
Torque
0.5 N.m (4.41b.in) to 0.7N.m (6.21b.in)

Certifications
CE, RoHS

7.0. EMC, SAFETY, ENVIRONMENTAL

Product Standard

IEC 61326

ESD
IEC 61000-4-2 Level II

Radiated Susceptibility

IEC 61000-4-3 Level III
Electrical Fast Transients
IEC 61000-4-4 Level IV

Surge

IEC 61000-4-5 Level IV

Conducted Susceptibility

IEC 61000-4-6 Level III

Conducted Susceptibility

IEC 61000-4-6 Level III
Voltage Dips and Interruptions
IEC 61000-4-11 (AC) All levels 1,2,4,5 (Criteria A) levels 3,6 (Criteria B)
IEC 61000-4-29 (DC) level 1 (Criteria A)
All levels 2,3,4,5 (Criteria B)

Conducted Emission

CISPR 11 Class A

Radiated Emission

CISPR 11 Class A

Line Interruption

GTS3.3,Criteria "A" up to 20 ms , Criteria "B" up to 600 ms \& "C" above 600 ms

Isolation Level :

151F42B / 151F43B

	Sensor	OP1	OP2	OP3
Supply	2 kV	4 kV	4 kV	2 kV
Sensor	-	4 kV	4 kV	NA
OP1	-	-	4 kV	4 kV
OP2	-	-	-	2 kV

151G42B / 151G43B

	Sensor	OP1	OP2	OP3
Supply	2 kV	2 kV	4 kV	2 kV
Sensor	-	NA	4 kV	NA
OP1	-	-	2 kV	NA
OP2	-	-	-	2 kV

151H42B/151H43B

	Sensor	OP1	OP2	OP3
Supply	2 kV	2 kV	4 kV	4 kV
Sensor	-	NA	4 kV	4 kV
OP1	-	-	2 kV	2 kV
OP2	-	-	-	4 kV

151 J42B/151J43B

	Sensor	OP1	OP2	OP3
Supply	2 kV	4 kV	4 kV	4 kV
Sensor	-	4 kV	4 kV	4 kV
OP1	-	-	4 kV	4 kV
OP2	-	-	-	4 kV

151F43B1

	Sensor	OP1	OP2	OP3	RS485
Supply	2 kV	4 kV	2 kV	2 kV	2 kV
Sensor	-	4 kV	2 kV	NA	NA
OP1	-	-	4 kV	4 kV	4 kV
OP2	-	-	-	2 kV	4 kV
OP3	-	-	-	-	NA

151G43B1

	Sensor	OP1	OP2	OP3	RS485
Supply	2 kV				
Sensor	-	NA	2 kV	NA	NA
OP1	-	-	2 kV	NA	NA
OP2	-	-	-	2 kV	4 kV
OP3	-	-	-	-	NA

151H43B1

	Sensor	OP1	OP2	OP3	RS485
Supply	2 kV	2 kV	4 kV	4 kV	2 kV
Sensor	-	NA	2 kV	2 kV	NA
OP1	-	-	2 kV	2 kV	NA
OP2	-	-	-	2 kV	2 kV
OP3	-	-	-	-	2 kV

Note($\#^{6,7}$): As there is no isolation between RS-485 and OP1, user must take care that the ground of circuits to which these outputs are connected should be isolated from each other.

151J43B1

	Sensor	OP1	OP2	OP3	RS485
Supply	2 kV	4 kV	4 kV	2 kV	2 kV
Sensor	-	4 kV	2 kV	2 kV	NA
OP1	-	-	4 kV	4 kV	4 kV
OP2	-	-	-	2 kV	4 kV
OP3	-	-	-	-	2 kV

151K42B

	Sensor	OP1	OP2
Supply	2 kV	4 kV	2 kV
Sensor	-	4 kV	NA
OP1	-	-	4 kV

151F42B / 151F43B

	Sensor	OP1	OP2	OP3
Supply	2 kV	2 kV	-	2 kV
Sensor	-	2 kV	-	-
OP1	-	-	-	2 kV
OP2	-	-	-	-

Safety:

Test Voltage between I/P and O/P

UL $508 \quad 2 \mathrm{kV}$
Impulse Voltage between Input and Output
IEC 60947-5-1 Level IV

Single Fault

IEC 61010-1

Insulation Resistance

UL $508>50 \mathrm{~K} \Omega$
Leakage Current
UL $508<3 \mathrm{~mA}$

Environmental:

Cold Heat

IEC 60068-2-1

Dry Heat

IEC 60068-2-2

Vibration

IEC 60068-2-6, 5 g

8.0 MEASUREMENT:

Parameters for this are included in the group "InP". Inputs accepted are Thermocouples ($J, K, E, S, B, R), m$ signals ($0-50 \mathrm{mV}$), ($0-60 \mathrm{mV}$), ($12-60 \mathrm{mV}$) , Current 4-20mA, Voltage 0-10V \& RTD PT100.For proper functionality, it is recommended to switch off and on the instrument, whenever these are modified. The parameters related to input are 'unit' - unit of measurement (${ }^{\circ} \mathrm{C},{ }^{\circ} \mathrm{F}$) and 'dP' - decimal point representation. In case of analog input, the input voltage gets divided over the range set in the parameters 'IScL' lower limit and 'ISch' upper limit. Instrument can be re-calibrated according to application needs, by using parameters "oFSt" and "rAtE". If "rAtE" $=1.000$, then using parameters "oFSt", it is possible to set positive or negative offset that is simply added to the value read by the probe.

If the offset is not constant for all the measurements, it is possible to operate the calibration on any of two points. In this case, in order to decide which values to program on parameters "oFSt" and "rAte",
the following formulae must be applied:
"rAte" $=(y 2-y 1) /(x 2-x 1)$
"oFSt" = y2 - rate*x2
Where,
$y \mathrm{l}=$ Measured temperature 1
$\mathrm{xl}=$ temperature displayed by instrument
y2 $=$ Measured temperature 2
x2 = temperature displayed by instrument
The instrument thus visualizes the temperature as:
$y=x *$ "rAtE" + "oFSt"
where $y=$ displayed value and $x=$ measured value

8.1 Output in case of measurement error:

In case of measurement error (over range/under range/sensor break), the instrument supplies the power as programmed on parameters
"oPP". In case of PID control, the power output is as a percentage of cycle time. In case of ON/OFF control, the Cycle time is automatically considered as 20s ("e.g. In event of probe error with ON/OFF control and "oPP $=50$ " the control output will be activated for 10 s and deactivated for 10 s till measurement error remains.)
If No Error

Controller	Output Power
PID	As per \% of cycle time
On/Off	20 Secs
If Error	
Controller	Output Power
Any	As per programmed in opp

9.0 DISPLAY:

Using parameters "dISP", located in the group "conF", it is possible to configure the lower display to visualize different parameters like the Control Output (coP), operating set point (SP). In group "conF", the parameters "LEd" is used to define the LED shift index functioning for the three LED's repesented as: ' $+{ }^{\prime},{ }^{\prime}-1$, ' $=$ '.
The lighting up of the ' $=$ ' LED indicates that the process value is within the range [SP-LEd] and [SP+LEd].
The lighting '-' LED indicates that the process value is lower than [SP-LEd] \& lighting up of ' + ' indicates that the process value is higher than [SP+LEd]

Menu	Sub menu	Options
conF	dlsP	1.coP
		2.SP
		3.EFSP
		4.A1th
		5.A2th
		6.Unit
		7.timr

Note:

1) If we select Unit-->C/F
i.e ($\mathrm{C}:$ Celsius, $\mathrm{F}:$ Fahrenheit) then C or F will displays on lower display
2) If timr option is selected then set timer time will displayed on lower display

10.0 ACTIVE SET POINT SELECTION:

This instrument allows pre-programming of, up to 2 different set points ("SP1", "Sp2")..
(for \#1,\#2,\#3,\#4,\#13)

OR

up to 4 different set points
("SP1", "SP2", "SP3", "SP4")
(for \#5,\#6,\#7,\#8,\#9,\#10,\#11,\#12)
and then selection of which one must be active.
The effective set point can be selected:
-by parameter "EFsP" in the group of parameters "SP"
-By key "C" if parameter "kEy" = "SPSL".
The maximum number of set points is determined by parameter " $n S P$ " located in the group of parameters "SP".
.......(for \#5,\#6,\#7,\#8,\#9,\#10,\#11,\#12)

10.0 ACTIVE SET POINT SELECTION:

The controller acts in three different ways:
1.Automatic Control
2.Control Off
3.Manual Control

Menu	Sub menu	Options
conF	kEy	oPLP oFF

Note: The instrument switches into "Auto" state at the end of auto-tuning. When switched ON , it automatically assume its state at the last switch off.

11.1 Automatic Control (Auto):

Automatic control is the normal functioning state of the controller. When in Auto mode, the device will function as per parameter programmed on parameters cont.

11.2 Control OFF (OFF):

In this mode, all the COP(Controller) outputs are deactivated

11.3 Bumpless Manual/Open Loop Control(oPLP):

This options allows to manually program the power percentage given as output by the controller by deactivating automatic control. When the instrument is switched to manual control, the power percentage is same as last one supplied. To change the power output, adjust the parameter manual reset "rS" in the "rEg" group.

Menu	Sub menu	Options
rEg	rS	Value

12.1 ON/OFF Control:

All the parameters regarding ON/OFF control are listed in group "rEg". This type of control can be set by programming parameters "cont"= onFs for ON-OFF action with symmetric hysteresis OR onFA for ON-OFF action with asymmetrical hysteresis. It drives the output programmed as coP [selected by parameters. oPcF\# $\#^{5.6,7,9,9,10,11,12}$ in oP], depending on the measured temperature value, on effective set point, function mode ("FUnc") and on the hysteresis ("hESt"). The action can be explained as follows, In case of reverse action i.e. hEAt being set on parameters "FUnc" in "rEg" menu, the controller activates the output when the process value "PV" goes below [SP-hEST]. It deactivates the output when the PV goes above "SP+hEST"in case of symmetric ON-OFF control and above "SP" in case of Asymmetric ON-OFF control.

Menu	Sub menu	Options
rEg	Func	hEAt

Symmetric On Off Control (hEAt):

Condition	Action
$\mathrm{PV}<[\mathrm{SP}-\mathrm{hEST}]$	Controller Output is activated
$\mathrm{PV}>[\mathrm{SP}+\mathrm{hEST}]$	Controller Output is deactivated

Asymmetric On Off Control:

Condition	Action
$\mathrm{PV}<[\mathrm{SP}-\mathrm{hEST}]$	Controller Output is activated
$\mathrm{PV}>[\mathrm{SP}]$	Controller Output is deactivated

Similarly in case of direct action i.e.Cool being set on parameters. "Func", the controller activates the output when the process value "PV" goes above (SP+hEsT) and deactivates the output when "PV" goes below "SP-hEsT" in case of symmetric ON-OFF control and"SP" Asymmetric ON-OFF control.

DIRECT ACTING:

Menu	Sub menu	Options
rEg	Func	cool
Symmetric On Off Control (cool):		
Condition	Action	
PV < [SP-hEST]	Controller Output is deactivated	
PV $>[S P+h E S T]$	Controller Output is activated	

Asymmetric On Off Control:

Condition	Action
$\mathrm{PV}<[\mathrm{SP}-\mathrm{hEST}]$	Controller Output is deactivated
$\mathrm{PV}>[\mathrm{SP}]$	Controller Output is activated

12.2 Neutral Zone ON/OFF Control (nr):

12.2.1 Action:

All the parameters referring to neutral zone ON/OFF control are listed in the group "rEg". This type of control can be set when two outputs, configured by parameter "oPcf" ("oPcF" = h1c2 configures OP1 as heater and OP2 as cooler) are programmed as "coP" and the parameters "cont" = nr. The neutral zone control is used to control processes in which there is an element which causes a positive increase in temperature (eg. Heater, Humidifier etc.) and an element which causes decrease in temperature (e.g. Cooler, de-humidifier, etc.) Depending on measurements of effective set point "SP" and on hysteresis "hESt", the control functions works on programmed outputs. The controller activates the output configured as heater when process value goes below [SP-hEst] and deactivates it once the PV reaches SP. Further it activates the output configured on cooler when process value goes above [SP+hESt]. The cooler output is deactivated when PV reaches SP again.

Note: This type of control is applicable for double acting cat ids only.

Menu	Sub menu	Options
rEg	cont	nr
OP	oPcF	hlc2
Condition	Heater	Cooler
$\mathrm{PV}<[\mathrm{SP}-\mathrm{hEST}]$	ON	OFF
$\mathrm{PV}=\mathrm{SP}$	OFF	OFF
$\mathrm{PV}>[\mathrm{SP}+\mathrm{hEST}]$	OFF	ON
$\mathrm{PV}=\mathrm{SP}$	OFF	OFF

12.2.2 cdły Menu :

Compressor duty cycle "cdty" is used to protect compressor short cycling. It is a time based activation of the compressor. The activation of compressor can be avoided till the time set on parameter "cdty".
"thus" providing the delay. Time programmed on "cdty" is counted starting from last output deactivation and then even if the regulator requires to switch on the corresponding output, the activation is delayed till the time set on "cdty" elapses.

Note: This menu is visible only when control type is selected as nr (Neutral zone)

12.3 PID Control

12.3.0 Single Acting PID Control:

All the parameters referring to PID control are listed in the group "rEg". The single action PID control can be obtained by programming parameters. "cont" = Pld and works on output configured as "coP" Depending upon the effective setpoint "sP", function "FUnc" and on the instrument's PID algorithm the control output is calculated. The single action PID control algorithm foresees the setting following parameters:
"Pb" - Proportional Band.
"Int" - Integral Time
"dEr" - derivative time
"rS" - Manual Reset (if "Int=0" only)
for \# ${ }^{12,2,4,4,3,14: ~ " c t " ~-~ C y c l e ~ t i m e ~}$

Menu	Sub menu	Options
rEg	cont	PID
OP	OP1/OP2/OP3 (atleast one)	coP
rEg	FUnc	hEAt/cooL

12.3.1 Double Acting PID Control ($\left.\#^{5 ., 7,8,9,0,101,12}\right)$:

All the parameters referring to PID control are listed in the group "rEg". The double action PID control is used to control processes where there is an element which causes a positive increase in temperature (ex. Heating) and an element which causes a decrease in temperature (cooling). This type of control is selected by setting "cont" as Pid setting. The outputs configured for HEAT or COOL action in oPcF menu should be configured as "coP" The effective set Point "SP" and the instruments algorithm decides the controller output of Double Action PID control.
The cycle times "hct"(Heat cycle time: for output acting on heater) and "cct" (cool cycle time: for output acting on cooler) should have low value with frequent intervention of control outputs, so that good stability of process variable can be achieved, in case of fast processes.

It is recommended to use solid state relays to drive actuators. The Double Action PID control algorithm needs the programming of following parameters:
"Pb" - Proportional Band
"Int" - Integral Time
"dEr" - derivative time
"hct" - Heat cycle time
"cct" - cool cycle time
"rS" - Manual Reset (if "Int=0 only)
"coEF" - Coefficient Relation between power heating and cooling element. Range between 0.1 to 10.
"coEF" > 1: represents that the cooling element is stronger than heating element.
"coEF" $=1$: represents that the heating and cooling element are equally strong.
"coEF" < 1: represents that the heating element is stronger than cooling element.

Menu	Sub menu	Options
rEg	cont	Pld
OP	oPcF	h1c2
OP	OP1/OP2/OP3 (atleast two)	coP

13.0 AUTO TUNING:

Auto tuning is a process by which the controller automatically calculates the values of Pb , Int \& dEr suitable for the process. In this process, the controller carries out several operations on the process plant to determine these values.

1. Program and select desired Set Point.
2. Program parameters "cont"=PID.
3. For single action PID control, program parameters "Func" as "hEAt" if using heater or "cooL" if using cooler.
4. Also program the output to which the final control element is connected as "coP".
5. In case of Double action PID control, set "coP" on the two outputs selected using parameters "oPcF" to act on heater and cooler. Steps for Auto-tuning are as follows:

Menu	Sub menu	Options
rEg	cont	Pld
OP	OP1/OP2/OP3 (two for double acting) OP1/OP2/OP3 (one for single acting)	coP
rEg	Func(lf single acting)	hEAt/cooL
rEg	AUto	$1,2,3,4$

Note: Double acting device can be used as single acting device.
6. Program parameters. "Auto" as:
" 1 "- Tune at Every power ON. If auto-tuning is desired, each time the instrument is switched ON.
" 2 "- Tune at first power ON. If auto-tuning is desired, the next time the instrument is switched ON. Once the tuning is finished, the parameters. "Auto" is swapped automatically to "OFF".
" 3 "- Tune manually. If auto-tunning is to be started manually by pressing the config key programmed as"stAt"
" 4 "- Tune at every set point change or at the end of soft start. This activates auto-tuning at every change of set point or at the end of soft-startcycle.
7. Switch OFF the instrument power and then switch it ON to start tuning if "Auto" is set as " 1 " or " 2 " or by pressing config. key programmed as "stAt". Flashing LED AT indicates the activation of Auto-tunning function. To start the auto tune following condition needs to satisfy:
For Single Acting mode, if "Func" is "hEAt" OR For dual acting mode if first stage is heating. Conditions...
$P V<[S P-|S P / 5|]$ if soft start is configured OR
$P V<[S P-|S P / 3|]$ if soft start is not configured.
and $S P-P V>=10$
For Single acting mode, if "Func" is "cooL" or For Double acting mode if first stage is cooling.
Conditions:
$\mathrm{PV}>[\mathrm{SP}+[\mathrm{SP} / 5]]$ If Soft start is configured
OR
$\mathrm{PV}>[\mathrm{SP}+[\mathrm{SP} / 3]]$ If Soft start is not configured
and $P V-S P>=10$

For example on Auto tunning, refer page no. 88 If the above conditions are not satisfied at the start of auto tune, the display will show "ErAt" message and the instrument will take the control conditions according to previously programmed PID. To make 'ErAt' disappear, Press "ENTER" key. If autotune is not completed in 2 hours, the instrument shows 'NoAt' on display. The cycle in progress is automatically get stopped in case of sensor error. After correct PID parameters are tuned, the calculated values are stored in instrument memory.

14.0 RAMP AND SOAK \# ${ }^{5,6,7,8,9,10,111,12}$

1. The PR-69 has provision for three ramps and three soaks corresponding to SP1, SP2 and SP3.
2. All parameters related to Ramp-Soak functions are grouped in menu 'rEg'.
3. Three strategies have been adopted that determine the state of ramp and soak in case of power resumption after failure.

Note:-

At the end of the Ramp \& Soak profile the controller switches 'OFF' controller outputs. To repeat the Ramp \& Soak profile reset the device. This can be done by assigning 'rSEt' to the configurable key in the 'ConF' menu. If the Ramp \& Soak profile is not desired, set all Ramp and soak parameters to 'InF' \& then reset the device.

14.1 Power Down Resumption Mode (Prmd):

a. cont: The device keeps in memory the last set value before the power failure. After resumption, it starts from the same value and continues the profile. In case of soak stage once the power is resumed, the stage continues for the remaining time.

Power failure in	Action
Ramp stage	After power resumption, device will continue from the last virtual sp value. Assume 3 set points, SP1 $=50, ~ S P 2=80 ~ \& ~ S P 3 ~=~ 100 . ~$ If the virtual set point is 65, and power failure occurs. After power resumption, device will start from last virtual set point with the respective ramp rate, irrespective of the PV value.

Power failure in	Action
Soak stage	After resumption device will continue for remaining soak time. Eg: Assume 3 set points, Sp1 $=50, S P 2=80 \& S p 3=100$, If the device is in second Soak Stage \& configured soak time is 50 minutes. If power failure occurs after 10 minutes, then after power resumption, device will continue with soak stage of 40 minutes and move towards the next SP with new ramp rate, irrespective of the PV

b. rbck: The device starts from present PV value and continues with the profile. In case of power failure in soak stage, once the power is resumed and if $P V$ is not equal to the target $S P$ of the given soak stage, then starting from PV the SP ramps up to the target SP value with the slope of previous ramp. Once target SP is reached, device move to soak stage which continues for the remaining time.

Power failure in	Action
Ramp stage	$\mathrm{SP1=50C,SP2=60C,SP3=70C}$ Ramp1 $=5 \mathrm{C} / \mathrm{min}$ Ramp2=10C/min Ramp3=15C/min If device was in between 60C and 70C, if power fails then after power resumption device will check for PV. If PV(40C) is less than current Ramping stage set point i.e (SP2=60C) then device will start from 40C with ramp rate of second stage(Ramp2=10C/min).

Power failure in	Action
Soak stage	Device will compare SP with PV if notequal then device will ramp back from current PV with ramp rate of last set point till the soak stage reached then continue for remaining soaking period. Eg: Assume three set points SP1=50,SP2=60,SP3=70 If device was in between 60 and 70 if power fails then after power resumption device will compare PV with SP value. Consider PV is 40 which is not equal to last set point SP which was 60 then device will ramp back from 40 with ramp rate of second stage and reach till 60. After reaching 60 device will enter into soaking stage for remaining time.

c. rsEt: On power failure, the entire ramp and soak profile is reset. At the end of the profile irrespective of 'Prmd ' the device switches OFF all the control outputs.

Power failure in	Action
Ramp stage/	Profile is reset and device will start from beginning. Soak stage Eg: Assume three set points $S P 1=50, S P 2=60, S P 3=70$ If device was in between 60 and 70 if power fails then after power resumption device will start form 50 which is first set point irrespective of PV value in both stages.

14.2 Holdback (hbck):

14.2.0 Holdback In Ramp:

While in ramp mode if the difference between SP and PV value goes beyond Holdback value, the SP ramping stops and it is held on the given value as long as PV < (SP-hbck) (hEAt) OR PV >(SP+hbcK) (cool) range.

14.2.1 Holdback In Soak:

While in Soak mode if the difference between SP and PV value goes beyond Holdback value, the soak timing is stopped and it is resumed when PV comes back within (SP-hbck) (hEAt) and (SP+hbcK) (cool) range.

15.0 SOFT START:

All parameters referring to the soft start functioning are contained in the group "rEg". The soft start functioning allows limitation of output power when instrument is switched on for a limited period of time. Following parameters are needed:
"SSt" - Soft start time in hh: mm
"SSth" - Soft start threshold
"Stp" - Soft start power
Soft start functionality will abort when sst or ssth whichever earlier is met.

16.0 Timer:

1) When PV value reach or cross to SP then the Timer will start, during this process Opl=cop will be in controlling action.
2) Op2 \& Op3 can be assign to timer alarm.
3) Timer functionality will work in both PID \& ON-OFF mode.
for eg: When $P V$ reaches to $S P=100^{\circ} \mathrm{C}$ then the timer will start, Timer will be ON for 15 minutes then after completing timer time Opl will be continues OFF and if alarm is configure to timer then alarm will be ON as the timer time is elapsed.

Note:

1) When ever the Set Timer time is competed then "OVER" message will display on lower display.

17.0 ALARMS:

1. Absolute low ("AbLO" on display): Alarm is activated if PV goes below Alth and is deactivated if PV goes above (Alth+AlhY).

Menu	Sub menu	Options
AL1/AL2	AltY	AbLo

2. Absolute high ("Abhl" on display): Alarm is activated if PV goes above Alth and is deactivated if PV goes below (Alth-Alhy).

Menu	Sub menu	Options
AL1/AL2	AltY	Abhi

3. Absolute band ("AbbA" on display):

Alarm is activated if PV goes above A1hi or below AlLo. It is deactivated if it goes below(Alhi-Alhy) or above (AlLo+Alhy).

Menu	Sub menu	Options
AL1/AL2	AltY	AbbA

4. Deviation low ("dELo" on display): Alarm is activated if PV goes below (Effective Set Point(ESP) - Alth) and is deactivated when it goes above (Effective Set Point(ESP)-Alth + Alhy).

Menu	Sub menu	Options
AL1/AL2	AltY	dELo

5. Deviation high("dEhi" on display): Alarm is activated when PV goes above Effective Set Point(ESP)+A1th) and is deactivated When it goes below (Effective Set Point(ESP)+Alth-Al hy).

Menu	Sub menu	Options
AL1/AL2	AltY	dEhi

6. Deviation band ("dEbA" on display): Alarm is activated when PV goes above(Effective Set Point (ESP)+Alhi) or below(Effective Set Point(ESP) - A1Lo) and is Deactivated when PV goes below (Effective Set Point(ESP) + Alhi - Alhy) or above (Effective Set Point(ESP) - AlLo + Alhy).

Menu	Sub menu	Options
AL1/AL2	AltY	dEbA

7. Output low("OPLO" on display): Alarm is activated if output goes below olLV and deactivated when output goes above (olLV+olhs).

Menu	Sub menu	Options
AL1/AL2	AltY	oPLo

8. Output high("OPhi" on display): Alarm is activated if output goes above olhv and deactivated when output goes below (olhv-olhs).

Menu	Sub menu	Options
AL1/AL2	AltY	oPhl

ALARM FUNCTIONALITY

Menu	Sub Menu	Options	Details	Dependencies	Functions
$\begin{aligned} & \mathrm{AL1} \\ & \mathrm{OR} \\ & \mathrm{AL2} \end{aligned}$	Alty	AblO	Absolute Low Activation: PV < Alth Deactivation: PV > Alth+AlhY	PV,Alth,AlhY	To alert user when PV falls below predefined value.(Alth)
		Abhl	Absolute High Activation: $\mathrm{PV}>\mathrm{Alth}$ Deactivation: PV < Alth - AlhY	PV, Alth, AlhY	To alert user when PV exceeds predefined value. (Alth).
		AbbA	Absolute band Activation: $\mathrm{PV}>\mathrm{A}$ lhi or $\mathrm{PV}<\mathrm{AlLo}$ Deactivation: PV < Alhi-A1hY or PV > A1Lo+AlhY	PV, Alhi, AlLo, AlhY	To alert user when PV, 1.falls below predefined value.(A1Lo) OR 2.exceeds predefined value.(Alhi).
		dELo	Deviation Low Activation: $\mathrm{PV}<(S P-A 1$ th $)$ Deactivation: PV > (SP - Alth)+AlhY	PV, SP, Alth, AlhY	To alert user when PV falls below the SP by the value set in Alth
		dEhl	Deviation High Activation: $\mathrm{PV}>(\mathrm{SP}+\mathrm{A} 1$ th $)$ Deactivation: $\mathrm{PV}<(S P+A 1$ th $)$-Alh Y	PV, SP, Alth, AlhY	To alert user when PV exceeds the SP by the value set in Alth.
		dEbA	Deviation Band Activation: PV < (SP-AlLo) or PV > (SP+Alhi) Deactivation: PV > (SP - AlLo) + AlhY or $P V<(S P+A l t h)-A 1 h Y$	PV, SP, Allo, Alhi, AlhY	To alert user when, 1.PV falls below the SP by the value set in A1Lo. 2. PV exceeds the SP by the value set in Alhi.
		oPLo	Output Low Activation: COP < olLV Deactivation: COP > olLV + olhs	COP,ollV,01hS	To alert user when COP falls below value set in olLV.
		oPhl	Output High Activation: COP > olhV Deactivation: COP < olhV + olhs	COP,olhV,01hS	To alert user when COP exceeds value set in olhV.

Menu	Sub menu	Options
AL1/AL2	AltY	AbLo
		Abhl
		AbbA
		dELo
		dEhl
		dEbA
		oPLo
		oPhl

17.2 Alarm Functions:

Sr	Value	\quad Details	Application
1	0	Normal Activation: When alarm condition occurs. Deactivation: When the alarm condition disappears.	Normal
2	1	Acknowledged Activation: When alarm condition occurs. Deactivation: 1. When the alarm condition disappears. 2. When Configurable key programmed for alarm acknowledgment and press in alarm condition.	To ignore the alarm condition
3	2	Delayed Activation: delayed by time set in AldL parameter after occurrence of the alarm condition. Deactivation: When the alarm condition disappears. Note: During the delay if the alarm condition disappears, alarm will not be generated.	To delay the alarm generation, some times alarm can be generated for shorter time due to some disturbance in system.
4	4	Latched Activation: When alarm condition occurs. Deactivation: When Configurable key programmed for alarm acknowledgment and press once alarm generated. Note: Alarm will not get automatically deactivated once generated.	To record or draw attention of alarm generation condition every time. Since no automatic of alarm.
5	8	No alarm at Power On Activation: If alarm condition exist at power on, alarm will not be activated. Once device goes in no alarm condition after power on, there after alarm will be activated at every occurrence of the alarm condition. Deactivation: Alarm will be deactivated In no alarm condition.	To avoid alarm after power on. Since possibility of alarm condition after every power on.
6	16	No alarm at SP change Activation: If alarm condition generates after SP change, alarm will not be activated. Once device goes in no alarm condition after SP change, there after alarm will be activated at every occurrence of the alarm condition. Deactivation: Alarm will be deactivated in no alarm condition.	To avoid alarm after change in $S P$. Since possibility of alarm condition after every time change in SP.

17.2 Alarm Functions:

Sr	Value	Details	Application
7	$24=$		
$16+8$	No alarm at SP change + No alarm at Power On Activation: If alarm condition exist at power on or If alarm condition generates after SP change, alarm will not be activated. Once device goes in no alarm condition after SP change or power on, there after alarm will be activated at every occurrence of the alarm condition. Deactivation: Alarm will be deactivated in no alarm condition.	Note: We can club the different alarm functionality by doing the addition of the set value for those alarm functions.	

Note:

Alarm types and functions are explained for alarm

1. The explanation is same for alarm
2. Binary addition of alarm function allows Combination of different function.

Eg. If it is required to have no alarm at power On [8] and no alarm at sP change [16], set function as 24.

18.0 PROGRAMMING:

Follow given procedure to program the device:

1. Press key 'E' to enter menus. If password "Enabled", then 'PV' display shows "codE", which is blinking and 'SV' display shows " 0 ".
2. Enter code as "69" using 'UP' key. Press key 'E' to enter into menu. If wrong code is entered, then the device exits from programming mode. If correct code is entered, the device enters into the set of menus.
3. Using 'UP' or 'DN' key we can move to desired set of parameter.
4. Press key ' E ', to enter the group of parameters related to the main menu. Here, the 'PV' display shows the menu and 'SV' shows the value programmed on it.
5. To change this value, press key 'E'. Using 'UP' or 'DN' key, select the value to be entered. Press key 'E' to confirm the value or key 'C' to maintain the previous value.
6. Whenever the value of the menu is being edited, the 'PV' display blinks. Here, 'UP' and 'DN' key change the value on 'SV' display. When the display is not blinking, we can move to next menu using 'UP' or 'DN' key. To exit from the menu press key 'C'
7. Key 'C' acts as "EXIT" key when in programming mode. While on main screen, when 'PV' display shows temperature and 'SV' display shows user configured value, it performs the function as configured on it in the "key" parameter of "conF" menu.

19.0 SEVEN SEGMENT DISPLAY:

A	B	C	D	E	F	G	H	1	J	K	L	M
A	\square	[\square	E	F	9	h	i	L	\hbar	L	-
N	\bigcirc	P	Q	R	S	T	U	v	W	X	Y	Z
\square	\square	P	9	r	5	t	U	\square	!	三	4	-

20.0 MENUS: MAIN MENU: SP (Set point)

Parameter		Description
1	SPLL	Set point low level Range: - 1999 to set point active, default: -1999
2	SPhL	Set point high level Range: Set point active to 9999, default: 9999
3	$\begin{aligned} & \mathrm{nSP} \#^{5.6,7,8 .} \\ & \#^{9,10,11,12 .} \end{aligned}$	No. of. Set point Range: 1 to 4, default: 4
4	EFSP	Effective Set point. Range\# ${ }^{5,6,7,8,910,111,12}: 1$ to nsP, Range\# ${ }^{1,23,4,13,14}: 1$ to 2 default: 1
5	SP1	Set point 1 Range: sPLL to sPhL, default: 0
6	SP2	Set point 2. Range: sPLL to sPhL, default: 0
7	$\begin{aligned} & \text { Sp3 } \#^{5,6,7,8} \\ & \#^{9,10,11,12} \end{aligned}$	Set Point 3 Range: sPLL to sPhL, default: 0
8	$\begin{aligned} & \text { Sp4 } \#^{5,6,7,8} \\ & \#^{9,10,11,12} \end{aligned}$	Set Point 4 Range: sPLL to sPhL, default: 0

MAIN MENU: InP(Input)

1	SEnS	Sensor: Range: J : J Thermocouple K : K Thermocouple Ptl : PT100 RTD E : E Thermocouple S: S Thermocouple B : B Thermocouple R: R Thermocouple Analog Input: 0-10 : Voltage Analog Sensor 0-5 : Voltage Analog Sensor 1-5 : Voltage Analog Sensor 4-20 : Current Analog Sensor 1260: 12 to 60 mV 0_50: 0 to 50 mV 0_60: 0 to 60 mV default: J Thermocouple Note: For \# ${ }^{14}$ Sens: R,S,K, J,PT100 are accepted.
2	IScL	Low scale in case of analog inputs Range: -1999 to Isch, default: 0
3	Isch	High scale in case of analog inputs Range: IscL to 9999, default: 100
4	rAtE	Slope of straight line Range: 0.001 to 2.000 , default: 1.000
5	oFSt	Offset of straight line Range: -1999 to 9999, default: 0
6	oPP	Output power in case of error Range: 0 to 100.0\% \# ${ }^{1,2,3,4,13,14}$ Range: -100.0% to $100.0 \% \#^{5.6,7,9,9,10,11,12}$ default: 0
7	dP	Decimal point Range: $S / B / R / K$ thermocouple:0 J/E thermocouple \& Pt 100:0 to 1, Analog Signals: 0 to 3 , default: 0
8	UnIt	Temperature measurement unit Range: C° or F°, default: C°
9	$\begin{aligned} & \text { rFSh } \\ & \#^{23,6,7,10,11} \end{aligned}$	Analog signal output update rate Range: 150 to 5000 ms , default: 150 ms
10	PvLo $\#^{2,3,6,7,10,11}$	Process variable low Range: - 1999 to 9999, corresponds to $4 \mathrm{~mA} / 0 \mathrm{~V}$, default:0
11	Pvhl $\#^{2,3,6,7,10,11}$	Process variable High Range: -1999 to 9999 Corresponds to $20 \mathrm{~mA} / 10 \mathrm{~V}$, default: 100
12	$\begin{aligned} & \text { coLo } \\ & \#^{2,3,6,7,10,11} \end{aligned}$	Controller output low Range: 0 to $100 \#^{2.3},-100$ to $100 \#^{6,7,10,11}$ Corresponds to $4 \mathrm{~mA} / 0 \mathrm{~V}$, default: 0
13	$\begin{aligned} & \text { cohl } \\ & \#^{2,3,6,7,10,11} \end{aligned}$	Controller output high Range: 0 to $100 \#^{2,3},-100$ to $100 \#^{6,7,10,11}$ Corresponds to $20 \mathrm{~mA} / 10 \mathrm{~V}$, default:10.0
14	Filt	Filter menu Range: 0 to 10, default: 2

MAIN MENU: oP(output)		
Parameter		Description
1		Output configure as: Range: 1.h2c3: heat 2 Cool 3 , 2.h3c2: heat 3 Cool 2. default: h2c3
1	$\begin{array}{\|c\|c\|} \hline O P C F \\ \#^{58,12} \end{array}$	Output Configure as: Range: 1. hlc2: heat 1 Cool 2 2. hlc3: heat 1 Cool 3 3. h2c3: heat 2 Cool 3 4. h2cl: heat 2 Cool 1 5. h3cl: heat 3 Cool 1 6. h3c2: heat 3 Cool 2, default: h1c2
2	$\begin{aligned} & \text { O1cF } \\ & \#^{23,67.0 .10,11} \end{aligned}$	Output 1 configured as: Range: 1. IOP: 4-20 mA output 2. V OP: $0-10 \mathrm{~V}$ output, default: I OP
3	OPI $\#^{23}$	Output 1 to act as: Range: 1. coP: Controller output 2.tEmP: temperature re-transmitted output, default: temP
3	$\begin{aligned} & \text { OP1 } \\ & \#^{6,710,11} \end{aligned}$	Output 1 to act as: Range: 1. coP: Controller output 2. tEmP: Temperature re-transmitted output 3. EsP: Effective Set Point, default: tEmP
3		Output 1 to act as: Range: 1. coP: Controller output 2. Alno: Alarm 1 normally open 3. Alnc: Alarm 1 normally closed 4. A2no: Alarm 2 normally open 5. A2nc: Alarm 2 normally closed 6. SEnb: Sensor break 7. BrkL: Loop break alarm 8. OFF: Relay off, default: cop
4	OP2	Output 2 to act as: Range: 1. coP: Controller output 2. Alno: Alarm 1 normally open 3. Alnc: Alarm 1 normally closed 4. A2no: Alarm 2 normally open 5. A2nc: Alarm 2 normally closed 6. Senb: Sensor break 7. BrkL: Loop break alarm 8. oFF: Relay off 9. trAL\# ${ }^{1,4,1,3,4}$: Timer Alarm, default: off
5	OP3	Applicable for all cat ids except \#13. (Same Functionality as Op2, Only trAL: Timer Alarm is applicable for cat_id \# ${ }^{1,23,4,4}$)
6		Loop break output Lbol $\#^{58,12}$: Output 1 Lbo2 : Output 2 Lbo3 : Output 3 default : Lbo2
7	brkt	Break loop time Range: Off to 9999 s , default: off
8		Timer time Range: Off to 9999 Min, default: ofF
	$\begin{aligned} & \operatorname{trAt} \\ & \#^{1,23,4,13} \end{aligned}$	Timer Alarm time Range: On to 9999 Min, default: On

MAIN MENU: ALI (Alarml)

	rameter	Description
1	Alty	Alarm 1 type: Range: 1. AbLo: Absolute low 2. Abhl: Absolute high 3. AbbA: Absolute band 4. dELo: Deviation Iow 5. dEhl: Deviation High 6. dEbA: Deviation band 7. oPLo: Output low 8. oPhl: Output High, default: AbLo

Parameter		Description
2	AlFn	Alarm 1 function: 0: Alarm on error +1: Acknowledge alarm +2: Delayed alarm +4: Latch alarm +8 : No alarm at power on +16: No alarm at set-point change Range: 0-31, default: 0
3	Allo	Alarm 1 low level Range: -1999 to A1th, default: -1999
4	Alth	Alarm 1 Threshold Range: Allo to AlHi, default: 0
5	Alhl	Alarm 1 high level Range: Alth to 9999, default:9999
6	AlhY	Alarm 1 hysteresis Range: OFF to 9999, default: 1
7	O1LV	$\begin{aligned} & \text { Output } 1 \text { low value } \\ & \text { Range \# } \#^{1,2,3,4,13}: 0.0 \% \text { to } 01 \mathrm{HV} \\ & \text { Range } \#^{5.6,7,9,10,11,12}:-100.0 \% \text { to olHV, default: } 0.0 \\ & \hline \end{aligned}$
8	OlhV	Output 1 high value Range: olLV to 100.0 \%, default: 100.0
9	olhs	Output 1 hysteresis Range: OFF to 100.0 \%, default:1
10	AldL	Alarm 1 delay Range: OFF to 9999 s, default: Off

Menus for Alarm 2 are same as for Alarm 1.

MAIN MENU: REG(Regulator)

Parameter		Description
1	cont	Controller type: Range: 1. onFS: On-Off Symmetric, 2. onFA: On-Off Asymmetric 3. PID: PID controller 4. nr: neutral zone On-OFF($\left.\#^{5.6,7,8,9,10,11,12}\right)$ default: PID
2	FUnc	Controller type: Range: 1. hEAt: Reverse acting 2. cool: Direct acting, default: hEAt
3	hEst	Hysteresis for On-Off controller Range: OFF - 9999, default:1
4	AUto	Auto tuning: Range: oFF: auto tuning off 1: auto tuning at every power on 2: auto tuning at first power on 3: Start manually 4: auto tune at every set point change, default: 2
5	Pb	Proportional band Range: 0 to 9999, default: 10
6	Int	Integral time Range: OFF to 9999 s, default: 120
7	dEr	Derivative time Range: OFF to 9999 s, default: 30
8	$\begin{aligned} & c \dagger \\ & \#^{1.2,3,4,13} \end{aligned}$	Cycle time Range:1 to 130 s, default: 20
9	$\begin{aligned} & \text { rs } \\ & \#^{1,2,3,4,13} \end{aligned}$	Manual reset Range: 0 to 100.0 \%, default: 0
9	$\mathrm{rs} \#^{5,6,7,8}$ $\#^{9,10,11,12}$	Manual reset Range: -100.0 to 100.0 \%, default: 0
10	$\begin{aligned} & \hline \text { hct } \#^{5,6,7,8} \\ & \#^{9,10,11,12} \end{aligned}$	heat cycle time Range: 1 to 130 s, default: 10
11	$\begin{aligned} & \hline \operatorname{ct+}{ }^{5,6,7,8} \\ & \#^{4,10,11,12} \end{aligned}$	Cool cycle time, Range: 1 to 130 s, default: 10
12	coeF $\#^{5.6,7.8}$ $\#^{9,10,11,12}$	Coefficient, Range: 0.1 to 10.0, default: 0.1
13		Compressor duty cycle Range: O(Off) to 9999 s , default: 0

	rameter	Description
14	Prmd \# ${ }^{5,6,7,8}$ $\#^{9,10,11,12}$	Power down mode Range: 1. cont: Continue 2. rbck: Ramp back 3. rsEt: Reset, default: cont
15	$\begin{aligned} & \text { rmP1 } \\ & \#^{55,7,8} \\ & \#^{19,1,1,1,12} \end{aligned}$	Ramp 1 Range: 0.00 to 99.99 - Inf unit/min, default: Inf
16	$\begin{aligned} & \text { Sok } \\ & { }^{\$_{0.7 .8}^{8}} \\ & { }^{10,1,1,1,12} \end{aligned}$	Soak 1 Range: 0.00 to 99.59 - Inf hh:mm, default: Inf
17	$\begin{aligned} & r m P 2 \\ & \#^{5 \cdot, 7.8} \\ & \#^{1,10,1,1,12} \end{aligned}$	Ramp 2 Range: 0.00 to 99.99 - Inf unit/min, default: Inf
18	$\begin{aligned} & \text { Sok2 } \\ & { }^{50,7,8} \\ & \#^{5,1,1,1,1,12} \end{aligned}$	Soak 2 Range: 0.00 to 99.59 - Inf hh:mm, default: Inf
19	$\begin{aligned} & \text { rmP3 } \\ & \#^{5 \cdot, 7,8} \\ & \#^{5,1,1,1,1,12} \end{aligned}$	Ramp 3 Range: 0.00 to 99.99- Inf unit/min, default: Inf
20	$\begin{aligned} & \text { Sok3 } \\ & \$^{5,7,7,1} \\ & \#^{9,0,0,1,12} \end{aligned}$	Soak 3 Range: 0.00 to 99.59 - Inf hh:mm, default: Inf
21	hbck $\#^{5,6,7}$ \# ${ }^{9.10 .11,12}$	Ramp hold back Range: OFF to 9999, default: OFF
22	$\begin{aligned} & \text { SSP } \\ & \#_{1,3,4}^{12,4} \\ & \#^{13,14} \end{aligned}$	Soft start power Range: 0.0 to 100.0, default: 0
22	$\begin{aligned} & \text { SSP } \#^{5.677} \\ & \#^{9.1011,12} \end{aligned}$	Soft start power Range: - 100.0 to 100.0, default: 0
23	SSt	Soft start time Range: 0.00 (OFF) to 7.59 (hh:mm), default: Off
24	SSth	Soft start threshold Range: -1999 to 9999, default: 0

Parameter	Description
rSEt	To reset device and load default setting. Please press the enter key. If "Yes" - will display message to confirm reset. If "No" - will get back to menu. Affer Confirm,
If "Yes "- Reset device and back to main screen.	
If "No" - Back to main screen.	

Main Menu: modb (Modbus)\# ${ }^{5}$

1	Addr	Device Id Range: 1 to 99, default: 1
2	bAUd	Baud rate: Range: 1. 3: 300 baud rate 2. 6: 600 baud rate 3. 12: 1200 baud rate 4. 24: 2400 baud rate 5. 48: 4800 baud rate 6. 96: 9600 baud rate 7. 192: 19200 baud rate, default: 96
3	PArt	Parity: Range: 1. EvEn: Even parity 2. odd: odd parity 3. None: None parity default: None
4	bItS	No. of bits Range: 8 to 9, default: 8
5	StPb	No. of stop bits Range: 1 to 2, default: 1

21.0 MODBUS :

PR-69 has adopted widely used MODBUS RTU protocol. The MODBUS RTU communication functions implemented in PR-69 series are: Function 3 - Read Holding Variables (read); Function 6 - Preset Single Register (write); Function 16 - Preset Multiple Register (write).

These functions allow the supervisory program to read and modify any data of the controller.

The communication is based on messages sent by the master station (host) to the slave stations (PR-69) and vice versa. Every a message contains four fields:
a) Slave address (from 1 to 99)
b) Function code: contains 3, 6 or 16 for specified functions.
c) Information field: contains data like word addresses and word values as required by function in use.
d) Control word: a cyclic redundancy check (CRC) performed with particular rules for CRC.

Note: For function 16 - Preset Multiple Register, We can only write one parameter at a time.

3.1 Function 3 - Read n Word

The request has the following frame:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(3)	Byte 1
First word Address MSB	Byte 2
First word Address LSB	Byte 3
Number of words MSB	Byte 4
Number of wordsLSB	Byte 5
CRC MSB	Byte 6
CRC LSB	Byte 7

The normal reply(as opposed to exception reply)has the following frame:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(3)	Byte 1
NB Number of Read bytes	Byte 2
Value of first word MSB	Byte 3
Value of first word LSB	Byte 4
Following Words	Byte 5
CRC Error Check MSB	Byte NB+2
CRC Error Check LSB	Byte NB+3

3.2 Function 6 - One word write. The request has the following frame:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(6)	Byte 1
Word Address MSB	Byte 2
Word Address LSB	Byte 3
Value of first word MSB	Byte 4
Value of first word LSB	Byte 5
CRC Error Check MSB	Byte 6
CRC Error Check LSB	Byte 7

3.3 The exception reply

An exception reply is given when the request is formally correct, but cannot be satisfied standing particular situations; the reply contains a code indicating the cause of the missing regular reply. The frame is:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(3)	Byte 1
First Word Address MSB	Byte 2
First Word Address LSB	Byte 3
Number of Word MSB	Byte 4
Number of Word LSB	Byte 5
CRC Error Check LSB	Byte 6
CRC Error Check MSB	Byte 7

3.4 Function 16 - Preset Multiple Register, one word write.

The request has the following frame:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(0X10)	Byte 1
Start register no,(high byte)	Byte 2
Start register no,(Low byte)	Byte 3
No. of register to write(High byte)	Byte 4
No. of register to write(Low byte)	Byte 5
No. of data bytes	Byte 6
Data 0 MSB	Byte 7
Data 0 LSB	Byte 8
Data 1 MSB	Byte 9
Data 1 LSB	Byte 10
Data 2 MSB	Byte 11
Data 2 LSB	Byte 12
CRC bytes of 1 to 6 (LSB)	Byte 13
CRC bytes of 1 to 6 (MSB)	Byte 14

Note: Number Of data bytes that follows 3 registers X 2 Bytes each = 6

The normal reply(as opposed to exception reply) has the following frame:

Filed Name	Byte Position
Slave MODBUS ID	Byte 0
Function Code(0X10)	Byte 1
Start register no,(high byte)	Byte 2
Start register no,(Low byte)	Byte 3
No. of register written(High byte)	Byte 4
No. of register written(Low byte)	Byte 5
CRC bytes of 1 to 6 (LSB)	Byte 6
CRC bytes of 1 to 6 (MSB)	Byte 7

1) Illegal Function code-1
2) Illegal data address-2
3) Illegal data value field-3
4) Slave device busy-6

Address 0 used for broadcasting messages has not been implemented in Pr69.

22. MODBUS QUERIES:

1. Variable - Pv

Description: Process Variable
Data type: Signed short
Range: -1999 to 9999
Decimal dependence: dP
READ/WRITE: Read
Address (in HEX) : 1001

2. Variable - coP

Description: Control Output
Data type: Signed short
Range: - 100 to 100
Decimal dependence: 0
READ/WRITE: Read
Address (in HEX): 1002

3. Variable - AL1

Description: Alarm 1 Status
Data type: Unsigned short
Range: OFF-xxxx xxx0, ON- $x x x x x x x 1$
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1003
4. Variable - AL2

Description: Alarm 2 Status
Data type: Unsigned short
Range: OFF-xxxx xx0x, ON- xxxx xxlx
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1003

5. Variable - sEnb

Description: Sensor break alarm status
Data type: Unsigned short
Range: OFF-xxxx x0xx, ON- xxxx xlxx
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1003

6. Variable - LbA

Description: Loop break alarm status
Data type: Unsigned short
Range: OFF-xxxx 0xxx, ON- xxxx 1xxx
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1003

7. Variable - SP

Description: Effective set point
Data type: Signed short
Range: sPLL to sPHL
Decimal dependence: dP
READ/WRITE: Read
Address (in HEX): 1004

8. Variable - stAt

Description: Regulator status
Data type: Unsigned short
Range: OFF - 0, Manual - 1,
AUTO SYM ON/OFF-2, AUTO ASYM ON/OFF-3,
AUTO N ZONE ON/OFF-4,
AUTO PID TUNE ON-5, AUTO PID TUNE OFF-6
READ/WRITE: Read
Decimal dependence: NA, Address (in HEX): 1005

9. Variable - MvEr

Description: Model Version
Data type: Unsigned short
Range: 105:Pr05, 106:PR06, 107: Pr07, 108: PR08
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1006

10. Variable - cvEr

Description: Code Version
Data type: Unsigned short
Decimal dependence: NA
READ/WRITE: Read
Address (in HEX): 1007

11. Variable - rFLg

Description: Ramp Soak Flg status
Data type: Unsigned short
Range:
NO RAMP SOAK ON: 0
RAMP1 STAGE: 1
SOAK 1 STAGE: 2
RAMP2 STAGE: 3
SOAK2 STAGE: 4
RAMP3 STAGE: 5
SOAK3 STAGE: 6
RAMP SOAK END: 7
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 1008

12. Variable - Aout\# ${ }^{6,8}$

Description: Value Transmitted on Analog output
Data type: Unsigned short
Range: 3 to 21 or 0-10
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 1009
13. Variable - Output 1 status (ON/OFF) $\#^{5,6,7,8}$

Description :This is for indication of OP 1
Data type: Unsigned short
Range: 0: OFF, 1:ON
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 1009
14. Variable - Output 2 status (ON/OFF) \# ${ }^{5,6,7,8}$

Description: This is for indication of OP2
Data type: Unsigned short
Range: 0: OFF - 1 : ON
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 100A
15. Variable - Output 3 status (ON/OFF) ${ }^{5.6,7,8}$

Description: This is for indication of OP3
Data type: Unsigned short
Range:0: OFF - 1 : ON
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 100B

16. Variable - Status OF PV w.r.t SP\# ${ }^{5.6,7,8}$

Description: This is for relation between PV \& SP
Data type: Unsigned short
Range: 0-3
In case of sensor break: 0
"-" (PV<SP): 1
" $=$ " ($\mathrm{PV}=\mathrm{SP}$): 2
"+" (PV>SP):3
Decimal dependence: NA
READ/WRITE: Read, Address (in HEX): 100C

SP

1. Variable - SPLL

Description: Set point low
Data type: Signed short
Range: -1999 to setpoint as selected by EFSP
Decimal dependence: dP
READ/WRITE: Read/Write
Address (in HEX): 2001

2. Variable - SPhL

Description: Set point high
Data type: Signed short
Range: Setpoint as selected by EFsP to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2002

3. Variable - nSP

Description: Number of set point
Data type: Unsigned short
Range: 1 to 4
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2003

4. Variable - EFSP

Description: Effective set point
Data type: Unsigned short
Range: 1 to $n s P$
Decimal dependence: NA
READ/WRITE: Read/Write
Decimal dependence: dP, Address (in HEX): 2004

5. Variable - SP1

Description: Set point 1
Data type: Signed short
Range: spLL to sphL
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2005

6. Variable - SP2

Description: Set point 2
Data type: Signed short
Range: spLL to sphL
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2006

7. Variable - SP3

Description: Set point 3
Data type: Signed short
Range: spLL to sphL
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2007

8. Variable - SP4

Description: Set point 4
Data type: Signed short
Range: spLL to spHL,
Decimal dependence: dP,
READ/WRITE: Read/Write, Address (in HEX): 2008

InP

1. Variable - SEns

Description: Sensor select
Data type: Unsigned short
Range:
$0=\mathrm{J}$ thermocouple, 1 = K thermocouple, 2 = E thermocouple
$3=S$ thermocouple, $4=B$ thermocouple, $5=$ P+100 RTD
$6=0-50 \mathrm{mV}$ signal, $7=0-60 \mathrm{mV}$ signal, $8=12-60 \mathrm{mV}$,
$9=R$ thermocouple, $10=4-20 \mathrm{~mA}, 11=0-10 \mathrm{~V}, 12=0-5 \mathrm{~V}, 13=1-5 \mathrm{~V}$
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2009

2. Variable - IScL

Description: Analog input low
Data type: Signed short
Range: -1999 to Isch
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 200A

3. Variable - ISch

Description: Analog input high
Data type: Signed short
Range: IscL to 9999
Decimal dependence: dP
READ/WRITE: Read/Write
Address (in HEX): 200B

4. Variable - rAtE

Description: Measurment Rate
Data type: Signed short
Range: 0.001 to 2.000
Decimal dependence: 3
READ/WRITE: Read/Write
Address (in HEX): 200C

5. Variable - oFSt

Description: Measurement Offset
Data type: Signed short
Range: - 1999 to 9999
Decimal dependence: dP
READ/WRITE: Read/Write
Address (in HEX) : 200D

6. Variable - oPP

Description: Output power in case of error
Data type: Signed short
Range: -100.0 to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 200E

7. Variable - dP

Description: Decimal point
Data type: Unsigned short
Range: 0 to 3
Decimal dependence: 0
READ/WRITE: Read/Write
Address (in HEX) : 200F

8. Variable - unlt

Description: Unit of measurement
Data type: Unsigned short
Range: 0- ${ }^{\circ} \mathrm{C}$, 1 - ${ }^{\circ} \mathrm{F}$
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2010

9. Variable - rFSh\# ${ }^{6,7}$

Description: Update pace of analog output
Data type: Unsigned short
Range: 150 to 5000
Decimal dependence: NA
READ/WRITE: Read/Write
Address (in HEX): 2011

10. Variable - PvLo\# ${ }^{6,7}$

Description: Process value/Set point low value for analog output according to value defined on OP1.
Data type: Signed short
Range: - 1999 to Pvhi
Decimal dependence: dP, READ/WRITE: Read/Write
Address (in HEX): 2012

11. Variable - Pvhi\#\#, ${ }^{6,7}$

Description: Process value/Set point high value for analog output according to value defined on OP1
Data type: Signed short
Range: PvLo to 9999
Decimal dependence: dP
READ/WRITE: Read/Write
Address (in HEX): 2013

12. Variable - CoLo\# ${ }^{6,7}$

Description: Control output low value
Data type: Signed short
Range: - 100.0 to Cohl
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2014

13. Variable - Cohi\# ${ }^{6,7}$

Description: Control output high value
Data type: Signed short
Range: CoLo to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write
Address (in HEX): 2015

oP

1. Variable - oPcF\# ${ }^{5.8}$

Description: Output Configure
Data type: Unsigned short
Range: 0: H1C2, 1: H1C3, 2: H2C1, 3: H3C1,
4: H2C3, 5: H3C2
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2016

1. Variable - oPcF\# ${ }^{6,7}$

Description: Output Configure
Data type: Unsigned short
Range: 0: H2C3, 1: H3C2
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2016

2. Variable - olcF\# ${ }^{6,7}$

Description: Output 1 Config
Data type: Unsigned short
Range: 0: I_oP, 1: V_oP
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2017

3. Variable - oP $1 \#^{6,7}$

Description: Outputl act on
Data type: Unsigned short
Range: 0: coP, 1: temp, 2:esp
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2018

4. Variable - oP $1 \#^{5,8}$

Description: Outputl act on
Data type: Unsigned short
Range: 0: coP, 1: Alno, 2: Alnc, 3: A2no, 4: A2nc,
5: sEnb, 6: BrkL, 7: Off
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2018

5. Variable - oP2

Description: Output 2 act on
Data type: Unsigned short
Range: 0: coP, 1: Alno, 2: Alnc, 3: A2no,4: A2nc
5: sEnb, 6: BrkL, 7: Off
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2019

6. Variable - oP3

Description: Output 3 act on
Data type: Unsigned short
Range: 0: coP, 1: Alno, 2: Alnc, 3: A2no, 4: A2nc
5: sEnb, 6: BrkL, 7: Off
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 201A

7. Variable - LboP

Description: Loop break alarm act on
Data type: Unsigned short
Range: 0: Lbo $1 \#^{58 .}$ 1: Lbo2, 2: Lbo3, $0=\mathrm{Lb}$ 2, 1: Lbo3\# ${ }^{6,7}$
Decimal dependence: NA
READ/WRITE: Write, Address (in HEX): 201B

8. Variable - brkt

Description: Loop Break time
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 201C

Alarms Types

1. Variable - A1tY

Description: Alarm 1 type
Data type: Unsigned short
Range: 0: AbLo, 1 : AbHI, 2: AbbA, 3: dELo, 4: dEHI,
5: dEbA, 6: oPLo, 7: oPHI
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 201D

2. Variable - Alfn

Description: Alarm 1 Function
Data type: Unsigned short
Range: 0 to 31
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 201E

3. Variable - AlLo

Description: Alarm 1 Function
Data type: Signed short
Range: -1999 to Alth
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 201F

4. Variable - A1th

Description: Alarm 1 Function
Data type: Signed short
Range: Allo to Alhi
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2020

5. Variable - Alhi

Description: Alarm 1 High
Data type: Signed short
Range: Alth to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2021

6. Variable - A1hY

Description: Alarm 1 hysteresis
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2022

7. Variable - ollv

Description: Output Low alarm1 value
Data type: Signed short
Range: - 100.0 to ol HV
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2023

8. Variable - olhv

Description: Output high alarm1 value
Data type: Signed short
Range: olLV to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2024

9. Variable - olhs

Description: Output alarm hysterisis 1
Data type: Unsigned short
Range: OFF to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2025

10. Variable - A1dL

Description: Alarm 1 delay
Data type: Unsigned short
Range: OFF to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2026

Al2

1. Variable - A2tY

Description: Alarm 2 type
Data type: Unsigned short
Range: 0: AbLo, 1: AbHi, 2: AbbA, 3: dELo
4: dEHi, 5: dEbA, 6: oPLo, 7: oPHi
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2027

2. Variable - A2Fn

Description: Alarm 2 Function
Data type: Unsigned short
Range: 0 to 31
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2028

3. Variable - A2Lo

Description: Alarm 2 Function
Data type: Signed short
Range: - 1999 to A2th
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2029

4. Variable - A2Th

Description: Alarm 2 Function
Data type: Signed short
Range: A2Lo to A2hi
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 202A

5. Variable - A2hl

Description: Alarm 2 High
Data type: Signed short
Range: A2th to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 202B

6. Variable - A2hY

Description: Alarm 2 hysteresis
Data type: Unsigned short
Range :0 to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 202C

7. Variable - o2Lv

Description: Output Low alarm 2 value
Data type: Signed short
Range: - 100.0 to 02Hv
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 202D

8. Variable - o2hv

Description: Output high alarm 2 value
Data type: Signed short
Range: o2LV to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 202E

9. Variable - o2hs

Description: Output alarm hysteresis 2
Data type: Unsigned short
Range: OFF to 100.0
Decimal dependence: 1
READ/WRITE: Read/Write,Address (in HEX): 202F

10. Variable - A2dL

Description: Alarm 2 delay
Data type: Unsigned short
Range: OFF to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2030

1. Variable - Cont

Description: Control type
Data type: Unsigned short
Range: 0: onFS, 1: onFA, 2: Pid, 3: nr
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2031

2. Variable - Func

Description: Control action functioning
Data type: Unsigned short
Range: 0: HEAt, 1 : cool
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2032

3. Variable - hESt

Description: On Off Hysterisis
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2033

4. Variable - AUto

Description: Autotune
Data type: Unsigned short
Range: 0: Off, 1: 1, 2: 2, 3: 3, 4: 4
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2034
5. Variable - Pb

Description: Proportional Band
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2035

6. Variable - Int

Description: Integral time
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2036

7. Variable - dEr

Description: Derivative time
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2037

8. Variable - rs

Description: Manual rese \dagger
Data type: Signed short
Range: -100 to 100
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2038

9. Variable - hct

Description: Heater output cycle time
Data type: Unsigned short
Range: 1 to 130
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 2039

10. Variable - cct

Description: Cooler output cycle time
Data type: Unsigned short
Range: 1 to 130
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 203A

11. Variable - coEF

Description: Coefficient
Data type: Unsigned short
Range: 0.1 to 10.0
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 203B

12. Variable - cdty

Description: Compressor On delay time
Data type: Signed short
Range: 0 to 9999
Decimal dependence: 0
READ/WRITE: Read/Write, Address (in HEX): 203C

13. Variable - Prmd

Description: Power down resume mode
Data type: Unsigned short
Range: 0: Cont, 1: rbcK, 2: rSEt
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 203D

14. Variable - rmP1

Description: Ramp 1
Data type: Unsigned short
Range: 0 to 99.99
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 203E

15. Variable - rmP2

Description: Ramp 2
Data type: Unsigned short
Range: 0 to 99.99
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 203F

16. Variable - rmP3

Description: Ramp 3
Data type: Unsigned short
Range: 0 to 99.99
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 2040
17. Variable - soK1

Description: Soak 1
Data type: Unsigned short
Range: 0 to 99.59 (hour:min)
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 2041

18. Variable - soK2

Description: Soak 2
Data type: Unsigned short
Range: 0 to 99.59 (hour:min)
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 2042
19. Variable - soK3

Description: Soak 3
Data type: Unsigned short
Range: 0 to 99.59 (hour:min)
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 2043

20. Variable - hbck

Description: Ramp Hold back
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 2044

21. Variable - SSP

Description: Soft start Power
Data type: Unsigned short
Range: -100 to 100
Decimal dependence: 1
READ/WRITE: Read/Write, Address (in HEX): 2045

22. Variable - SST

Description: Soft start time
Data type: Unsigned short
Range: 0 to 7:59 (hh:mm)
Decimal dependence: 2
READ/WRITE: Read/Write, Address (in HEX): 2046

23. Variable - SSTH

Description: Soft start threshold
Data type: Signed short
Range: -1999 to 9999
Decimal dependence: dp
READ/WRITE: Read/Write, Address (in HEX): 2047

Conf

1. Variable - Key

Description: Configure Key
Data type: Unsigned short
Range: 0: StAt, 1: oPLP, 2: Ack, 3: oFF,
4: SPSL, 5: ChSP, 6: rSEt, 7: noFc
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2048
2. Variable - diSP

Description: Configure Display
Data type: Unsigned short
Range: 0: sP, 1:Co, 2:A1th, 3:A2th, 4:EFSP
Decimal dependence: NA
READ/WRITE: Read/Write, Address (in HEX): 2049

3. Variable - Led

Description: Led Compare Index
Data type: Unsigned short
Range: 0 to 9999
Decimal dependence: dP
READ/WRITE: Read/Write, Address (in HEX): 204A

23. CONNECTION DIAGRAMS:

151F42B / 151F43B

151G42B / 151G43B

151H42B/151H43B

151J42B / 151J43B

151F43B1

1	2	3	4	5	6	7	8	9	10
		$\Gamma^{0,2} 2$					${ }^{N}{ }^{\mathrm{L}}$		
11	12	13	14	15	16	17	18	19	20

151G43B1

151H43B1

151J43B1

151K42B

151L42B

24. FAQs:

1. How to change effective set point selection using key ' C '?
A. "SLSP" (select effective set point) must be programmed on "kEy" parameter in the "conf" menu. If 'C' key is pressed and held for 2 sec while on main screen "EFsP" is displayed on the upper display and currently effective set point (1 if sP 1 is effective and 2 if $s P 2$ is effective) is displayed on the lower display. The upper display starts blinking. Using 'UP' /'DN' key the value can be changed. Press 'E' to activate the set point.Upper display stps blinking. Press 'C' key to exit from menu to main screen.

Menu	Sub menu	Options
conf	kEy	C^{\prime}

2. What is 'rAtE' and 'oFst' parameter in the 'InP' menu?'

A. If it is required to apply slope and/or offset to the temperature measured by the instrument, it can be done by using the above parameters. Any value set on above a parameter allows the device to see temperature as below:
Display temp. $=$ rAtE* Measured Temp + oFst This helps to re-calibrate the instrument.

3. What is "Sens" Break alarm and break loop alarm?

A. To select sensor break alarm set "sEnb" on the desired output. Whenever sensor break error occurs, the corresponding relay is set. To select break loop alarm, break loop alarm time i.e. "Brkt " is to be set. If the controller output remains at 100% for the above time, then loop break alarm is given. If any relay output is set for the alarm, the given relay is switched on. Break loop alarm works only in PID mode. Break loop alarm can be turned off by moving the controller to OFF mode and then back to auto mode by pressing properly programmed 'C' key.

Menu	Sub menu	Options
OP	OP1 / OP2	sEnb
OP	brkt	value

Note : Break loop alarm works only in PID mode.

4. What is Soft start threshold and Soft start time?

A. Soft start time is the time for which the soft power is provided after On. Soft start threshold is the absolute temperature upto which soft power is provided. While in soft start, if any of the above value is reached, the soft start ends.

Menu	Sub menu	Options
rEG	Auto	$1,2,3,4$

5. How to start Auto tuning?

A. Depending on the value programmed on the parameter "Auto" in "rEg" group auto tuning can be started.
1: Auto tuning is started at every power ON of the instrument.
2: Auto tuning is started at first power ON of the instrument.
3: Auto tuning can be started manually by the user by pressing properly programmed 'C' key.
4: Auto tuning is started at every set point change.
The set point changed should be the effective point.
Even if the value on parameter "EFSP" in the "SP" menu is changed and the values parameter "SP1" and "SP2" in the menu are different, the auto tuning is started. Following condition must be satisfied to start auto tune:
Controller should be in PID mode.
If Soft start is configured and auto tune is on 1 or 2 or 4:
"sP" be set the on $\mathrm{PV}<(S P-|S P / 5|)$ for HEAT action.
or $P V>(S P+|S P / 5|)$ for $C O O L$ action.
In all other conditions:
PV < (SP- $|S P / 3|)$ for HEAT action or $\mathrm{PV}>(S P+|S P / 3|)$ for COOL action.
6. What value will be returned by the device if a read query for the PV is sent and the device has Sensor/Over/Under range error?
A. Following values will be sent as reply for the modbus query to read temperature if device is in error mode.

Error displyed	Value returned
SEnb (sensor open)	$0 \times \mathrm{C} 000$
ovrg (over range error)	$0 \times \mathrm{C} 001$
unrg (under range error)	$0 \times \mathrm{C} 002$

7.How to restart ramp and soak profile?

A. To restart the ramp soak profile program " C " key as "rsEt", then while on the main screen press and hold the key for about 2 s . When reset, the lower display alternates between a message "rsEt" and value configured on it by the user. This message disappears after a time of about 1 min.

Menu	Sub menu	Options
conf	kEy	rSEt

8. How to change Set point while on main Screen?

A. It is possible to change the set point while on main screen. For this set "kEy" parameter in "conF" menu as "chsP". Then any time when on main screen if the " C " key is pressed for more than 2 sec currently effective set point appears on the screen. The upper display start blinking. By using "UP" key or "DOWN" key the value can be changed. Press "E" key to save the value. To discard the value press " C " key. To exit to main screen, press "C" key.

Menu	Sub menu	Options
conf	kEy	chsp

9. How to read SPLL value throught Modbus?

A. The query structure of read query is explained earlier. Assume that Salve address is 01 .

Filed Name	Byte Position
Slave MODBUS ID	0
Function Code(3)	03
First Word Address MSB	20
First Word Address LSB	01
Number of words MSB	04
Number of words MSB	01
CRC MSB	$0 A$
CRC LSB	DE

10. Can we Autotune the device below ambient temperature in double acting mode?

A. Yes, but if SP > PV; then Auto tuning should be done only above ambient temperature. And if SP < PV, Autotuning should be done only below ambient temperature.

Ex 1.
If Auto tuning is desired for a Set Point of $60^{\circ} \mathrm{C}$ (i.e. $\mathrm{SP}=60$) \& device is configured in Dual Acting mode or Single Acting mode (Func = HEAT), then auto tuning will start only if $\mathrm{PV}<[60-|60 / 3|]=40^{\circ} \mathrm{C}$, if soft start is not configured.
Ex 2.
If Auto tuning is desired for a Set Point of $75^{\circ} \mathrm{C}$ (i.e. $\mathrm{SP}=75$) \& device is configured in Dual Acting mode or Single Acting mode(Func = HEAT), then auto tuning will start only if $\mathrm{PV}<[75-|75 / 5|]=60^{\circ} \mathrm{C}$, if soft start is configured.
11.How to see CJC tempareture in device?
A. Press "UP" and "DOWN" key simultaneously. CJC value will appear on lower display. To remove CJC value Press "EXIT" key. Device will show value for which lower display is configured.

12. How to reset device?

A. On main screen when you press the enter key, you will get the option for reset the device "rset". When you press the reset you will get option as "yes" or "No" to reset device. If press "Yes" you will get option to confirm the reset device. If again press "Yes" then device will be reset and back to main screen .
If press "No" after confirming to reset then you get back to main screen.

13.What happen if Sens, ourg, unrg or control action off condition occurs when timer is ON?

A. If the timer is started and any of the condition occurs then the timer time will get pause and resume again from the pause time when the condition vanish.

Note: For Cat_ID :151K42B only output 2 can be assign as Timer alarm (trAL).

25. Error Occurred in Device:

Error	Error Details	Reason	Action
5En5	Sensor break error	Sensor is interrupted	Verify connection. between sensor and device \& then verify the correct functioning of the sensor
obrg	Over Range error	PV Value is above sensor limit	
Uning	Under Range error	PV Value is under sensor limit	
ErAt	Auto Tune error	Auto tunning cannot be started because process value is too high or too low	Press error key to make error disappear
noRt	Auto tunning time out	Auto tunning is not finished within 2 hrs	
FRI L	Fail error	An attempt is made to change the auto tunning parameters during auto tunning	
chri	Loop break interrupted	Loop control interrupted	Configure exit key to off \& make control output off
Err 1	Memory error	Possibly EEPROM error	Press enter to make error disappear
55r	SSR error	Possible SSR terminals are short	Check SSR terminals if error does not disappear after Enter key pressed

PASSWORD = 69

